← Назад

 

Бёмит

Бёмит — γ-АlООН. Назван по фамилии немецкого минералога И. Бёма (1857—1938), установившего путем рентгенометрических исследований присутствие этого минерала в боксите, сходного по кристаллической структуре с лепидокрокитом (FeOOH). Химический состав такой же, как диаспора. Аl2О3 — 84,97 % (по формуле). Содержит также SiO2, Fe2O3 (по-видимому, в виде механической примеси опала и гидроокислов железа), а также Ga2O3.

Сингония ромбическая; ромбо-дипирамидальный. Кристаллическая структура аналогична структуре лепидокрокита и описана ниже. Облик кристаллов. В трещинах и порах среди боксита, а также продуктов разложения нефелина устанавливается в виде очень мелких пластинчатых или чечевицеобразных кристалликов. Характерно, что часть граней являются блестящими, а часть граней - матовыми. Обычно же распространен в виде скрытокристаллической массы или в колломорфных образованиях (в бокситах).

Цвет. Бесцветный или белый с желтоватым оттенком. Средний показатель преломления для скрытокристаллических разностей равен 1,640-1,645.

Твердость 3,5. Спайность совершенная. Уд. вес 3,01-3,06. При прокаливании превращается в γ-Аl2О3 (кубическую модификацию, кристаллизующуюся в структуре шпинели).

Диагностические признаки. Ввиду ничтожности размеров кристалликов наиболее надежно устанавливается рентгеновским методом. От диаспора отличается меньшим показателем преломления и более низкой твердостью. При прокаливании в паяльной трубке не плавится, белеет и расщепляется по спайности. В стеклянной трубке выделяет воду. В кислотах нерастворим.

Происхождение и месторождения. Некоторое время бёмит был известен лишь в экзогенных месторождениях боксита (см. Гиббсит). Он встречен в древней коре выветривания в Яковлевском месторождении (КМА) в ассоциации с каолинитом на метаморфических сланцах железо-магнезиально-глиноземистого состава. Также встречается как низкотемпературный гидротермальный минерал в виде мелких кристал­ликов в пустотах среди пегматитов щелочных пород в Вишневых горах (Средний Урал) в ассоциации с водяно-прозрачным гиббситом на игольчатых кристаллах цеолита (натролита). Он образовался, по-видимому, в результате гидротермального изменения нефелина.

Гематит

Гематит — α-Fe2O3. Название происходит от греч. гематикос — кровавый. В природе известны две полиморфные модификации окиси железа: α-Fe2O3 — тригональная, устойчивая и γ-Fe203 — кубическая, менее распространенная, которую мы рассмотрим отдельно. Синонимы: железный блеск, железная слюдка, красный железняк (плотная скрытокристаллическая разность), железная сметана (красная порошковатая раз­ность). Мартитом называют псевдоморфозы гематита по магнетиту.

Химический состав. Fe — 70,0 %. Иногда в виде изоморфных примесей присутствуют Ti (титангематит) и Mg. В незначительных количествах обнаруживается также вода (гидрогематит, встречающийся обычно в колломорфном виде). В скрытокристаллических плотных массах часто устанавливается присутствие кремнезема и глинозема в виде механических примесей.

Сингония тригональная. Кристаллическая структура аналогична структуре корунда. Облик кристаллов. Сравнительно часто встречается в пластинчатых, ромбоэдрических и таблитчатых кристаллах, образующихся в пустотах. Обычны формы: ромбоэдров, пинакоида, гексагональной дипирамиды и др. Вследствие образований полисинтетических двойников по ромбоэдру, плоскости пинакоида, так же как и у корунда, бывают покрыты треугольной штриховкой, а плоскости ромбоэдра — параллельной диагональной штриховкой. Простые двойники наблюдаются редко, преимущественно по ромбоэдру и также по призме. Известны оригинальные скопления слегка искривленных пластинчатых кристаллов, сросшихся по плоскостям, близким к положению пинакоида (так называемые «железные розы»). Агрегаты. Часто встречается в сплошных плотных скрытокристаллических массах, листоватых или чешуйчатых агрегатах. Крупные почкообразные формы с радиально-волокнистым строением носят название «красной стеклянной головы». В очень многих случаях тонкораспыленная безводная окись железа в отдельных минералах и горных породах окрашивает их в интен­сивный красный цвет. Таковы, например, сургучно-красные яшмы (кремнистые породы), красные мраморы, красные глинистые сланцы.

Цвет кристаллических разностей гематита железно-черный до стально-серого. В тончайших пластинках он просвечивает густо-красным цветом. Землистые, распыленные разности обладают ярко-красным цветом. Черта вишнево-красная. Блеск металлический до полуметаллического. Иногда наблюдается синеватая побежалость. Полупрозрачен только в очень тонких пластинках.

Твердость 5,5-6. Хрупок, благодаря чему часто проявляет ложную пониженную твердость агрегатов, сложенных из пластинок. Спайность отсутствует. Характерна грубая отдельность по ромбоэдру. Уд. вес 5,0-5,2.

Диагностические признаки. Довольно легко отличается от похожих на него минералов (ильменита, магнетита, гётита и др.) по вишнево-красной черте, высокой твердости, пластинчатым или чешуйчатым агрегатам и по отсутствию магнитности.

При прокаливании в паяльной трубке не плавится. Характерно, что в восстановительном пламени при высокой температуре он становится магнитным (превращается в магнетит). Очень медленно растворим в HC1.

Происхождение и месторождения. Гематит образуется в окислительных условиях в самых различных генетических типах месторождений и горных пород, Температуры образования могут колебаться в широких пределах, но при высоких температурах он неустойчив.

1. Как составная часть в очень незначительных количествах он иногда присутствует в изверженных породах, преимущественно кислых (в гранитах, сиенитах, андезитах и др.). Сравнительно редко встречается также в пегматитах как минерал, образовавшийся в гидротермальный этап процесса.

2. В некоторых гидротермальных месторождениях он встречается в значительных массах в ассоциации с кварцем, баритом, иногда магнетитом, сидеритом, хлоритом и другими минералами. Явления позднейшего вос­становления его до магнетита наблюдаются довольно часто. Однако в других местах устанавливается обратный процесс: превращение магнетита в гематит (процесс мартитизации). Очевидно, эти явления связаны с изменением окислительно-восстановительного потенциала уже после отложе­ния этих минералов из гидротермальных растворов.

3. Как продукт вулканических эксгаляций обычно в небольших количествах встречается в виде кристаллов и налетов на стенках кратеров вулканов и в трещинах лав. В 1817 г. на Везувии в одной из трещин в течение 10 дней таким путем отложилась масса гематита мощностью около 1 м. По всей вероятности, он является результатом разложения возгонов хлористых соединений железа.

4. В коре выветривания в условиях сухого жаркого климата гематит и гидрогематит возникают в результате дегидратации первоначально образующихся гидроокислов железа. Этот необратимый переход легко доказывается искусственным путем при постепенном обезвоживании гётита. Нередко эти минералы ассоциируют с гидроокислами алюминия — диаспором и бёмитом (в железистых ярко-красных бокситах).

Известны гематито-гидрогематитовые образования сферолитовой формы с гладкой блестящей поверхностью почек («красная стеклянная голова»), обладающие концентрически-скорлуповатым строением и занозистым изломом. Отдельные концентрические зоны состоят из радиально-волокнистых масс то гематита, то гидрогематита, иногда гётита. Условия образования их недостаточно изучены.

Наконец, следует указать, что в странах с жарким климатом в верхних зонах магнетитовых месторождений нередко широко проявляется мартитизация, т. е. окисление магнетитовых масс с превращением их в гематитовые массы по реакции:

4Fe3O4 + O2 = 6Fe2O3

5. При процессах регионального метаморфизма в условиях повышенной температуры и повышенного давления гематит нередко в весьма больших массах возникает в осадочных месторождениях бурых железняков путем их дегидратации. Таковы, в частности, оолитовые красные железняки, сланцы с железной слюдкой и железистые кварциты, состоящие из прослойков кварцита, перемежающихся с прослойками тонкочешуйчатого плотного гематита. Подобные кварциты содержат иногда огромные по размерам тела гематито-магнетитовых сплошных руд.

Гематит как высший окисел железа является химически стойким минералом в зоне окисления. Иногда наблюдаются лишь явления физического выветривания (дезагрегации) гематитовых масс с образованием «железной сметаны». Превращение кристаллических разностей его в гидроокислы устанавливается исключительно редко, и притом в совершенно особых условиях и в очень незначительном масштабе.

В России крупнейшие месторождения высококачественных гематито- магнетитовых руд, например Михайловское и Яковлевское, находятся в пределах Курской магнитной аномалии (КМА) в докембрийских железистых кварцитах, являющихся результатом регионального метаморфизма первоначально осадочных железистых толщ, многократно собранных в крутые складки. Руды этой формации имеются и в Кривом Роге (Украина).

Примером гидротермальных месторождений является Кутимское (Северный Урал), руды которого залегают в палеозойских доломитах и представлены кристаллическими массами крупнопластинчатого гематита, местами превращенного в магнетит. Оолитовые красные железняки в виде пластовых залежей распространены на западном склоне Среднего Урала — в Кусье-Александровском и Пашийском районах. Мартитовые руды в существенных количествах встречаются в верхних зонах ряда крупных магнетитовых месторождений Урала: на горах Магнитной, Высокой (у Нижнего Тагила) и др. Сростки типа «железных роз» отмечены в неко­торых хрусталеносных жилах Приполярного Урала.

Из зарубежных месторождений отметим крупнейшие месторождения в докембрийских метаморфизованных толщах в районе Верхнего озера (США) и в Итабири (штат Минас-Жерайс, Бразилия). Большой интерес в минералогическом отношении представляет конктактово-пневматолитовое месторождение на о. Эльба, откуда происходят замечательные кристаллы железного блеска, экспонирующиеся во многих минералогических музеях. «Железные розы» встречаются в ряде мест в Альпах (Сен-Готтард и др.).

Практическое значение. Гематитовые руды принадлежат к числу важнейших железных руд, из которых выплавляются чугун и сталь. Значе­ние их в народном хозяйстве и промышленности общеизвестно. Содержание железа в сплошных гематитовых рудах обычно колеблется от 50 до 65 %. Чистые разности порошковатого гематита употребляются в качестве красок и для изготовления красных карандашей.

Гётит

Гётит — HFeO2. Гётит назван в честь поэта Гёте (1749-1832). Первоначально этот минерал был назван онегитом (по месту нахождения на Волкострове в Онежском озере), но так как его свойства не были описаны, это название не привилось в минералогической литературе. Синоним: «игольчатая железная руда» (в немецкой литературе). Является главной составной частью такого неоднородного, но широко распространенного и общеизвестного минерального образования, каким является лимонит (гидрогётит) — HFeO2∙H2O.

Название лимонит происходит от греческого слова лемон — луг (имелись в виду луговые и болотные руды гидроокислов железа).

Химический состав. Fe2O3 — 89,9 %, Н2О — 10,1 %. Содержание воды часто бывает выше, чем полагается по формуле: до 12-14 % (лимонит). В связи с этим раньше выделяли несколько минеральных видов, отличающихся друг от друга по содержанию воды и некоторым физическим свойтвам. Рентгенометрически установлено, что в действительности существует одно соединение с отношением Fe2O3 : Н2О = 1 : 1, обладающее определенной кристаллической структурой. Все более богатые водой разности гидроокислов железа по существу являются гидрогелями и содержат адсорбированную воду в разных количествах (в зависимости от степени дегидратации). Поэтому лимонит не является отдельным минеральным видом, представляя собой гидратированную разновидность гётита.

Так называемый турьит по рентгенометрическим и термическим исследованиям оказался смесью гётита с гидрогематитом и не принадлежит к числу самостоятельных минералов.

Скопления природных гидроокислов железа в своей массе, как правило, представляют собой гидратированные смеси гётита с лепидокрокитом, а также гидроокислами кремнезема, глинистым веществом и др. Такие смеси обычно называются бурыми железняками.

Сингония ромбическая; ромбо-дипирамидальный. Кристаллическая структура аналогична структуре диаспора. Облик кристаллов и агрегаты. Редко встречающиеся кристаллы имеют игольчатый или столбчатый облик. Может давать двойники, аналогичные коленчатым двойникам рутила. Обычно наблюдается в скорлуповатых, почковидных или сталактитовых формах с тонким радиально- или параллельно-волокнистым строением в изломе («игольчатая железная руда») или в сплошных плотных, пористых ноздреватых, шлаковидных, порошковатых массах. Распространены псевдоморфозы по кристаллам пирита и другим сульфидам железа. Встречается также в виде оолитов, бобовин, конкреций и жеод.

Цвет лимонита и гётита темно-бурый до черного. Порошковатый или охристый лимонит, нередко образующийся при физическом выветривании за счет плотного черного лимонита и силикатов железа, обладает довольно светлым желто-бурым цветом. Как показали сравнительные химические и рентгенометрические исследования, эта охристая разность ничем особенным не отличается от плотного лимонита. Черта гётита бурая с красноватым оттенком. Лимонит большей частью имеет светло-бурую или желто-бурую окраску. Блеск гётита алмазный до полуметаллического. На поверхности почковидных или сталактитовых масс лимонита часто обнаруживается гётит в виде блестящих смоляно-черных тонких корочек.

Твердость гётита 4,5-5,5, лимонита — 4-1 (в зависимости от физического состояния). Спайность гётита совершенная. Уд. вес гётита 4,0-4,4, у лимонита колеблется от 3,3 до 4,0.

Диагностические признаки. Гётит и лимонит сравнительно легко узнаются по неяснокристаллическим формам выделения, бурой черте и желто-бурым охристым примазкам.

При прокаливании в паяльной трубке гётит и лимонит плавятся; при продолжительном нагревании становятся сильно магнитными. В стеклянной трубке выделяют воду, краснеют, превращаясь в безводную Fe2O3. В HCl медленно растворяются.

Происхождение и месторождения. Гётит в виде игольчатых или столбчатых кристалликов крайне редко наблюдается как эндогенный минерал: в пустотах мелафиров, в аметистовых жеодах на Волкострове (Онежское озеро, Карелия); в пустотах пегматитовых жил Волыни (Украина), иногда в гидротермальных месторождениях как один из наиболее низкотемпературных минералов в пустотах, например в Пршибраме (Чехия), в ассоциации с более ранними, не затронутыми выветриванием сфалеритом и пиритом.

В главной же массе гётит и лимонит распространены как экзогенные минералы и притом почти исключительно в виде колломорфных или землистых масс. Они образуются преимущественно в результате гидролиза солей возникающих при окислении и разложении железосодержащих минералов: сульфидов, карбонатов, силикатов и других, в которых железо присутствует в двухвалентной форме. Образование гидроокислов железа на поверхности мы наблюдаем буквально всюду и притом в самых различных видах. В значительных массах бурые железняки образуются в зонах окисления сульфидных месторождений. Это так называемые железные шляпы, представленные рыхлыми, комковатыми и плотными массами, состоящими главным образом из лимонита, гётита, иногда лепидокрокита и др.

Большие массы гидроокислов железа заключены в осадочных месторождениях бурых железняков молодого (неогенового) возраста, образовавшихся в морских и озерных бассейнах. Накопление осадков гидроокислов железа, так же как и других гидроокислов, в прибрежных зонах этих бассейнов, очевидно, происходит путем коагуляции приносимых поверхностными водами коллоидных растворов в морских водах под действием электролитов, а в пресных озерах — в результате, вероятно, жизнедеятельности ферробактерий. Правда, в ряде осадочных месторождений гидроокислы железа, кроме того, дополнительно образуются в результате современного окисления попавших в зону окисления фаций карбонатных и силикатных руд железа.

Таким образом, лимонит и гётит почти исключительно образуются на самой поверхности в условиях полного доступа кислорода и влаги.

При региональном метаморфизме гидраты железа обезвоживаются и превращаются в безводные окислы (гематит и магнетит).

Из весьма многочисленных и разнообразных в генетическом отношении месторождений бурых железняков мы укажем лишь некоторые наиболее главные.

В пределах России известное Бакальское месторождение бурых железняков (Ю. Урал, к юго-западу от Златоуста) образовалось в виде крупных железных шляп в результате окисления кристаллических сидеритовых руд, по-видимому, гидротермального происхождения. Наряду с мягкими рыхлыми рудами широко распространены жеоды бурых железняков, часто очень крупные. Стенки полостей покрыты почками лимонита и гётита. Эти руды малофосфористые, высокого качества. Халиловское месторождение бурых железняков (у ж.-д. ст. Халилово Оренбургской области, Ю. Урал) образовалось в юрском периоде за счет выветривания и размыва массивов ультраосновных (серпентинитовых) пород. Поэтому бурые железняки несколько обогащены такими элементами, как никель и хром, являющимися ценными легирующими компонентами сталей. Никеленосные бурые железняки как остаточные продукты выветривания серпентинитов широко распространены на Урале; назовем Елизаветинское месторождение около Екатеринбурга.

Крупное месторождение преимущественно крупноолитовых бурых железняков находится на Керченском полуострове (Украина). Мощный рудный пласт залегает в мульдах среди осадков третичного возраста. Эти руды содержат 34-42 % Fe и обогащены фосфором. Аналогичные по составу руд, но заметно меньшего масштаба залежи имеются по соседству в России, на Таманском полуострове. Бурыми железняками представлены руды Эльзаса (Франция).

Практическое значение. Бурые железняки, так же как и гематитовые и магнетитовые руды, являются важнейшим сырьем для выплавки чугунов и сталей в доменных печах. В процессе нагревания этих руд в печах происходят полное их обезвоживание и образование чрезвычайно тонкопористых масс. Так как скорость восстановления руд сильно зависит от удельной поверхности массы, то эти руды являются более экономичны­ми по сравнению с магнетитовыми и гематитовыми рудами. Поэтому требования к минимальному содержанию железа в них снижаются до 35­40 % (вместо 50—60 % для плотных магнетитовых и гематитовых руд).

Гиббсит

Гиббсит — Аl[ОН]3. Назван в честь минералога из США Д. Гиббса (1776—1833). Впервые был установлен в XIX столетии на Урале. Синоним: гидраргиллит, от греч. гидро — вода и аргиллос — белая глина.

Химический состав. А12О3 — 65,4 %, Н2О — 34,6 %. В виде изоморфной примеси устанавливаются Fe2O3 (до 2 %), а также Ga2O3 (до 0,006 %). Химические анализы часто обнаруживают почти полное совпадение состава с теоретической формулой.

Сингония моноклинная. Кристаллическая структура слоистая. Облик кристаллов шестиугольно-таблитчатый. Распространены сложные двойниковые сростки. Чаще наблюдается в лучисто-листовых агрегатах, иногда в виде сферолитовых корок или в виде бобовидных или шаровидных конкреций. В главной же своей массе на земной поверхности распространен в тонкочешуйчатых или скрытокристаллических массах.

Цвет гиббсита белый или он слабо окрашен в сероватый, зеленоватый и красноватый оттенки. Блеск стеклянный, на плоскостях спайности перламутровый.

Твердость 2,5-3,5. Спайность весьма совершенная . Уд. вес 2,43. Прочие свойства. При нагревании сначала превращается в бёмит — AlOOH, затем, при прокаливании до 950 °С, в γ-Аl2О3 (кубической структуры типа шпинели).

Диагностические признаки. Для гиббсита характерными признаками являются следующие: весьма совершенная спайность, стеклянный блеск и малый удельный вес. От похожего на него диаспора отличается по твердости (у диаспора 6-7). От слюды отличается по удельному весу и оптическим свойствам (слюды оптически отрицательны).

При нагревании не плавится; выделяя ОН, белеет и становится непрозрачным. Гидроксил при этом теряется в два этапа: 1) при температуре 196-202°С (превращение в бёмит); 2) при температуре 510 °С (дальнейшая дегидратация). Прокаленный, будучи смочен раствором Co, окрашивается в ярко-синий цвет. Как и гидраты других металлов, переходит в раствор в солянокислой вытяжке.

Происхождение и месторождения. Образуется при разложении и гидролизе алюминийсодержащих силикатов отчасти при гидротермальных процессах (при сравнительно низких температурах), но главным образом при экзогенных процессах выветривания, и притом преимущественно в условиях жаркого климата в тропических и субтропических странах.

Гиббсит гидротермального происхождения встречается сравнительно редко и в очень небольших количествах.

При процессах выветривания в жарких странах гидраты глинозема, в том числе и гиббсит, образуются обычно совместно с гидратами железа. Гиббсит в значительно больших количествах присутствует в так называемых латерита, т. е. продуктах выветривания, широко распространенных в пределах современных тропических стран в виде покрова на коренных горных породах и состоящих в основном из гидроокислов, содержащих Fe2O3 и в меньшей степени Аl2О3 и SiO2. Он наблюдается и в бокситах, состоящих преимущественно из гидратов Al и образующихся также осадочным путем в водных бассейнах, очевидно, при размыве коры выветривания горных пород.

Как спутник диаспора гиббсит установлен в месторождениях боксита в Тихвинском районе Ленинградской области и в других местах. Кристаллы гиббсита до 5 см в поперечнике, имеющие минералогическое значение, были встречены среди гидротермальных образований в Шишимских и Назямских горах в Златоустовском районе (Ю. Урал) среди метаморфических сланцев, а также в виде продуктов изменения нефелина в пегматитах Вишневых гор (Средний Урал).

Практическое значение. Гиббсит, так же как и диаспор и бёмит, входящие в состав бокситов, является источником глинозема, из которого, выплавляется алюминий. Для этих целей используются бокситы с содержанием кремнезема не выше 10-15 %.

Диаспор

Диаспор — HAlO2. От греч. диаспор — рассеяние (некоторые образцы при нагревании, растрескиваясь, распадаются на мелкие частички). Впервые установлен еще в XVIII столетии на Урале.

Химический состав. Аl2О3 — 85 %, Н2О — 15 %. Известны разности, содержащие в виде изоморфной примеси Fe2O3 (до 7 %), Mn2О3 (Mn-диаспор), Cr2O3 (до 5 %) и SiO2 (до 4 %). Устанавливается также повышенное содержание Ga2O3 (до нескольких сотых процента).

Сингония ромбическая; ромбо-дипирамидальный облик кристаллов. Кристаллическая структура характеризуется плотной гексагональной упаковкой ионов О2-, причем ионы Al3+ размещаются в октаэдрических пустотах, т. е. между шестью ионами О. Каждый ион кислорода связан с тремя ионами Аl, т. е. координационные числа для Аl и О те же, что и в кристаллической структуре рутила (6 и 3). Протоны H1+ располагаются, вероятно, между парами ионов кислорода и в силу совершенной ничтожности своих размеров не требуют какого-либо особого пространства в кристаллической структуре. Таким образом, практически структура диаспора сложена ионами Аl и О в отношении 1 : 2 (как в рутиле).

Облик кристаллов. Встречающиеся кристаллы имеют тонкопластинчатые, иногда таблитчатые) формы. Наблюдается вертикальная штриховатость граней. Обычно распространен в листоватых или тонкочешуйчатых агрегатах.

Цвет диаспора бесцветный, белый, желтовато-бурый, светло-фиолетовый, зеленый, зеленовато-серый. Блеск стеклянный, на плоскостях спайности перламутровый. Черта белая. Твердость 6-7. Очень хрупкий. Спайность ясная. Уд. вес 3,3-3,5. При прокаливании переходит в α-Аl2О3 (корунд).

Диагностические признаки. Для диаспора характерны листоватые агрегаты, высокая твердость (отличие от гиббсита, слюд и др.). Смешать можно только с некоторым почти не различимыми по внешним признакам разностям хлоритоида (ортосиликата Fe, Mg и А1), встречающегося иногда совместно с ним и корундом в метаморфических породах. В отличие от него диаспор не разлагается в H2SO4 и, кроме того, отличается по некоторым оптическим свойствам.

При прокаливании в паяльной трубке не плавится. В кислотах и КОН не растворяется. В H2SO4 разлагается лишь после сильного прокаливания. В пробирке при накаливании распадается на мелкие белые чешуйки.

Происхождение и месторождения. Изредка встречается в некоторых контактово-метасоматических и гидротермальных месторождениях среди мраморизованных известняков в ассоциации с корундом, мусковитом, гематитом, рутилом и др.

В больших массах в виде тонкочешуйчатых агрегатов распространен в экзогенных месторождениях бокситов в парагенезисе с гиббситом, бёмитом и др.

Часто встречается в метаморфических породах совместно с корундом, хлоритоидом и другими минералами (в месторождениях наждака, вероятно, как продукт метаморфизма бокситов), иногда в кристаллических сланцах как породообразующий минерал в сопровождении кианита и других минералов.

В ассоциации с корундом и алюмосиликатами встречается в месторождениях наждака на Урале: Косой Брод (около Екатеринбурга) в мраморизованных известняках, по р. Борзовке (Кыштымский район).

Наблюдается также в месторождении Акташ (Узбекистан) в ассоциации с дюмортьеритом, пирофиллитом, алунитом и корундом, а также в других местах.

В крупных пластинках и кристаллах распространен в наждачных копях Честер в Массачусетсе (США), на о. Наксос (Греция) и в месторож­дениях Милас и Селкук (Турция).

Ильменит

Ильменит — FeTiO3, или FeO·TiO2. Название происходит от Иль­менских гор (Южный Урал), где этот минерал впервые был установлен. Синоним: титанистый железняк.

Химический состав. Fe — 36,8 %, Ti — 31,6 % , О — 31,6 %. В качестве изоморфных примесей может содержать Mg, нередко в значительных количествах (пикроильменит), иногда Мп (до нескольких процентов), также Cr, Al и V. Существуют непрерывный изоморфный ряд FeTiO3— MgTiO3 (гейкилит) и, вероятно, ряд FeTiO3—MnTiO3 (пирофанит), а при высоких температурах устанавливается ряд и с Fe2O3 (гемоильмениты).

Сингония тригональная. Кристаллическая структура аналогична структуре корунда, с той лишь разницей, что места Аl через слой поочередно занимаются Fе2+ и Ti4+. Такая замена разнородными ионами ведет к снижению симметрии структуры. Облик кристаллов толстотаблитчатый, ромбоэдрический, иногда пластинчатый. Наиболее часто наблюдаются следующие формы: пинакоид, ромбоэдры и др. Двойники по ромбоэдру. Обычно встречается в виде вкрапленных зерен неправильной формы, редко в сплошных зернистых массах. Под микроскопом ильменит в виде пластинчатых выделений устанавливается в некоторых разностях гематита в качестве продукта распада твердых растворов, но гораздо чаще он наблюдается в так называемых титаномагнетитах и изредка в некоторых титанистых разностях авгитов и других минералов тоже как продукт распада твердых растворов.

Цвет ильменита железно-черный или темный стально-серый. Черта большей частью черная до темно-серой, иногда бурая или буровато-красная (для разностей, содержащих в виде включений гематит). Блеск полуметаллический. Непрозрачен. Твердость 5-6. Спайность несовершенная по ромбоэдру, излом неровный и полураковистый. Уд. вес 4,72. Не ферромагнитен, гемоильмениты слабо магнитны.

Диагностические признаки. Похож на гематит. В кристаллах отличим по их формам (присутствуют только ромбоэдры, нет граней гексагональных дипирамид и скаленоэдров). В сплошных массах от гематита отличается по черте и более слабому блеску.

При прокаливании в паяльной трубке не плавится. В восстановительном пламени становится явно магнитным. В порошке с трудом растворяется в концентрированной HCl с выделением окиси титана. После плавления с КНSО4 при кипячении с оловом дает синевато-фиолетовый раствор, при разбавлении водой розовый (реакция на титан).

Происхождение и месторождения. В качестве вкрапленников в кимберлитах содержится пикроильменит, являющийся одним из минералов — индикаторов, позволяющих обнаруживать коренные месторождения алмаза по ореолам механического рассеяния. В виде вкрапленности ильменит встречается в основных изверженных породах (габбро, диабазах, пироксенитах и др.), часто в ассоциации с магнетитом, а также в щелочных породах. В значительных количествах он иногда наблюдается в пегматитах некоторых типов (сиенитовых) в парагенезисе с полевыми шпатами, биотитом, ильменорутилом и др.

В гидротермально измененных изверженных породах ильменит, как правило, наблюдается в разложенном состоянии, будучи превращен в так называемый лейкоксен. Известны также случаи разложения ильменита с образованием механической смеси гематита и рутила с сохранением внешней формы кристаллов ильменита.

В России кристаллы ильменита, иногда значительных размеров, встречаются в пегматитах Ильменских и Вишневых гор около г. Миасса (Южный Урал) среди сиенито-гнейсов. В виде включений в титаномагнетитах он широко распространен во многих месторождениях.

В поверхностных условиях ильменит относительно устойчив и может, претерпевая дальнюю транспортировку, накапливаться в аллювиальных и особенно в прибрежно-морских россыпях с рутилом, цирконом и др.

Из иностранных месторождений отметим норвежские: Экерзунд-Зоггендаль в виде жил в норитах (основная изверженная порода), Крагерё, где встречаются крупные кристаллы до 6-7 кг весом, и др.

Практическое значение. Является главной рудой на титан (большая часть добывается из россыпей), используемый в виде TiO2 в качестве белой краски (титановых белил с высокой кроющей способностью), а также для сплавов с железом — ферротитана, содержащего 10-15 % Ti, для изготовления особых сортов стали и для других целей.

Способность металлического титана выдерживать высокие температуры, устойчивость к коррозии, способность свариваться и низкий удель­ный вес делают его особенно ценным сырьем для авиационной промыш­ленности.