Куприт

Куприт — Сu2О. Название происходит от лат. cuprum — медь. Синоним: красная медная руда. Так называемые кирпичная медная руда (с примесью гидроокислов железа) и смоляная медная руда (с примесью кремнезема и гидроокислов железа) являются по существу минеральными смесями.

Химический состав. Сu — 88,8 %. Очень часто устанавливается в качестве механической примеси самородная медь, а в скрытокристаллических разностях — Fe2O3, SO2 и Н2О.

Сингония кубическая. Кристаллическая структура может быть формально представлена как объемноцентрированная кубическая решетка с атомами кислорода в узлах, в которую вдвинута со смещением на одну четверть вдоль телесной диагонали гранецентрированная решетка того же размера, но с медью в узлах. Координация меди равна двум, а кислорода — четырем. Облик кристаллов октаэдрический, реже кубический или додекаэдрический; в исключительных случаях (месторождение Корнуолл, Англия) присутствуют грани пентагонтриоктаэдра (проявление гипоморфизма). Кристаллы обычно мелки. Изредка наблюдаются игольчатые или волосистые индивиды, а также объемные скелетные кристаллы с тремя системами взаимно перпендикулярных игл (халькотрихит). Чаще встречается в сплошных зернистых, иногда в землистых (в смеси с посторонними примесями) агрегатах.

Цвет куприта красный до свинцово-серого (в тонкозернистых или скрытокристаллических агрегатах). Черта коричнево-красная или буровато-красная (при растирании вторым бисквитом желтеет). Блеск кристаллов в изломе алмазный или полуметаллический. В тонких осколках куприт полупрозрачен.

Твердость 3,5-4. Хрупкий. Спайность ясная. Уд. вес 5,85-6,15.

Диагностические признаки. Характерными свойствами являются: алмазный блеск, красная черта и особенно парагенезис с самородной медью, иногда другими вторичными минералами меди — малахитом, азуритом и др. От киновари, прустита и пираргирита отличается по черте (у киновари — ярко-красная, у прустита и пираргирита — красная, зеленеющая при растирании, а у куприта — коричнево-красная), но главным образом по поведению при прокаливании в паяльной трубке.

При прокаливании на угле чернеет, затем спокойно плавится и в восстановительном пламени дает королек меди. При нагревании в щипчиках окрашивает пламя в слабый зеленый цвет, а после смачивания HCl — в красивый голубой. В HNO3 легко растворяется, раствор зеленеет, а от прибавления избытка аммиака становится синим.

Происхождение и месторождения. Куприт образуется почти исключительно при экзогенных процессах окисления халькозиновых, реже борнитовых руд, распространенных в медных месторождениях в зоне вторичного сульфидного обогащения (ниже уровня грунтовых вод). Массовое развитие его может иметь место главным образом в том случае, когда в силу тех или иных причин (в частности, при понижении базиса эрозии) происходит понижение уровня грунтовых вод и возникшая до этого зона, богатая халькозином, попадает в сферу окисления. Процесс окисления халькозина при растворении в воде образующейся серной кислоты протекает, очевидно, по следующей реакции:

Cu2S + 2О2 + Н2О → Cu2O + H2SO4.

Легко видеть, что в случае недостатка кислорода по этой реакции вместо Сu2О или наряду с ним будет возникать металлическая медь, которая действительно очень часто наблюдается в образцах куприта (узнается по занозистости в изломе купритовых масс).

Вместе с самородной медью изредка встречается в некоторых осадочных породах, содержащих растительные остатки. В этих случаях он, по всей вероятности, является продуктом восстановления органическими веще­ствами сульфата закиси меди при некотором доступе кислорода по схеме:

Cu2SO4 + С + О → Сu2О + СО2 + SO2.

В тех случаях, когда концентрация углекислоты в растворах становится значительной, куприт оказывается неустойчивым. В природе широко распространены псевдоморфозы карбоната меди — малахита — по куприту. В более редких случаях он замещается другим карбонатом меди — азуритом.

В больших количествах и в хорошо образованных кристаллах встречался в Гумешевском, Меднорудянском и Турьинских рудниках на Урале, а также в ряде месторождений Алтая и в других местах в ассоциации с малахитом, азуритом, гидроокислами железа и пр. Из зарубежных пользовалось известностью месторождение Шесси близ Лиона (Франция), где встречались кристаллы до 2-3 см в поперечнике, и многие другие.

Практическое значение. Является одной из самых лучших медных руд. В далекие времена купритовые руды вместе с самородной медью, очевидно, представляли собой важнейшие объекты эксплуатации. В настоя­щее время в значительных массах встречается сравнительно редко.

Магнетит

Магнетит — Fe3+(Fe2+Fe3+)O4, применяются и сокращенные формулы: Fe2+Fe3+2O4 или даже — Fe3O4. Происхождение названия минерала неясно. Предполагают, что оно связано с местностью Магнезия (в Македонии) или с именем пастуха Магнеса, впервые нашедшего природный магнитный камень, который притягивал к себе железный наконечник его палки и гвозди его сапог. Синоним: магнитный железняк.

Химический состав. FeO — 31%, Fe2O3 — 69%. Содержание Fe — 72,4%. Обычно бывает сравнительно чистым по составу. Разновидности: титаномагнетит (правильнее было бы писать Ti-магнетит, т. е. титанистый магнетит) с содержанием TiO2 (до нескольких процентов), существующий при высоких температурах в виде твердого раствора ульвёшпинели Fe2+(Fe2+Ti4+)O4 в магнетите, ульвёшпинель и выпадает в магнетитовой матрице при распаде твердого раствора, окисляясь обычно в дальнейшем до ильменита. Для многих титаномагнетитов характерно присутствие существенной примеси кулсонита Fe2+V3+2O4, что делает такие разности промышленно важным источником ванадия. Известен Cr-магнетит с содержанием Сг2О3 (до нескольких процентов). Изредка встречаются разности, богатые MgO (в Mg-магнетите до 10%), Аl2О3 (15%) и др. Здесь же следует упомянуть о сравнительно редко встречающейся в природе ферромагнитной окиси железа γ-Fe2О3 кубической сингонии, получившей название маггемита (начальные буквы слов магнетит и гематит).

Сингония кубическая.

Облик кристаллов. Нередко наблюдающиеся кристаллы имеют октаэдрический, реже ромбододекаэдрический габитус. В базальтовом стекле под микроскопом устанавливается в виде мельчайших дендритов. Агрегаты. Большей частью встречается в сплошных зернистых массах или в виде вкраплений в изверженных, преимущественно основных породах. В пустотах можно встретить друзы кристаллов.

Цвет магнетита железно-черный, иногда с синеватой побежалостью на кристаллах. Черта черная. Блеск полуметаллический. Непрозрачен.

Твердость 5,5-6. Хрупок. Спайность отсутствует, однако у магнезиальных магнетитов часто наблюдается отчетливая отдельность по 111. Уд. вес 4,9-5,2. Прочие свойства. Сильно магнитен, иногда полярно. При красном калении (около 580 °С, так называемая точка Кюри) магнетизм внезапно исчезает, но по охлаждении снова обнаруживается.

Диагностические признаки. По магнитности и черной черте обычно легко узнается и отличается от сходных с ним по внешнему виду минералов (гематита, гётита, гаусманита, хромита и др.), но не всегда легко отличим от реже встречающихся богатых закисью и окисью железа других минеральных видов группы шпинели: хромита (Fe2+Cr3+2O4), якобсита (Fe3+(Mn2+Fe3+)O4) и др.

При прокаливании не плавится. В окислительном пламени вначале превращается в маггемит (γ-Fe2O3), затем в гематит, теряя магнитность. С бурой и фосфорной солью реагирует на железо (бутылочно-зеленое стекло). В HCl в порошкообразном состоянии растворяется.

Происхождение и месторождения. Магнетит, в отличие от гематита, образуется в более восстановительных условиях и встречается в самых различных генетических типах месторождений и горных пород.

1. В магматических горных породах он обычно наблюдается в виде вкрапленности. С основными породами (габбро) нередко генетически связаны магматические месторождения титаномагнетита в виде неправильной формы скоплений и жил.

2. В незначительных количествах он присутствует во многих пегматитах в парагенезисе с биотитом, сфеном, апатитом и другими минералами.

3. В контактово-метасоматических образованиях он часто играет весьма существенную роль, сопровождаясь гранатами, пироксенами, хлоритами, сульфидами, кальцитом и другими минералами. Известны крупные месторождения, образовавшиеся на контакте известняков с гранитами и сиенитами.

4. Как спутник магнетит встречается в гидротермальных месторождениях, главным образом в ассоциации с сульфидами (пирротином, пиритом, халькопиритом и др.). Сравнительно редко он образует самостоятельные месторождения в ассоциации с сульфидами, апатитом и другими минералами. Наиболее крупные месторождения этого типа в России известны в Ангаро-Илимском районе Сибири.

5. В экзогенных условиях образование магнетита может происходить лишь в исключительных случаях. Присутствие магнетитовых зернышек в современном морском иле, как полагают, является результатом не только сноса их с суши в виде обломочного материала, но также в виде новообразований на месте за счет гидроокислов железа под восстанавливающим влиянием разлагающихся органических веществ.

6. При региональном метаморфизме магнетит, так же как и гематит, возникает при дегидратации гидроокислов железа, образовавшихся в осадочных породах при экзогенных процессах, но в восстановительных условиях (при недостатке кислорода). К такого рода образованиям относят многие крупные по размерам пластовые залежи гематито-магнетитовых руд, встречающиеся среди метаморфизованных осадочных толщ.

В зоне окисления он является сравнительно устойчивым минералом. При механическом разрушении горных пород он, освобождаясь от своих спутников, повсеместно переходит в россыпи. В черных шлихах, получающихся при промывке золотоносных песков, магнетит является главной частью.

При выветривании он с большим трудом поддается гидратации, т. е. превращению в гидроокислы железа. Этот процесс наблюдается редко и сравнительно в очень небольших размерах.

Явление мартитизации (образование псевдоморфоз гематита по магнетиту) наблюдается в зонах жаркого климата. Локально проявляющаяся мартитизация магнетита устанавливается также в гидротермальных и метаморфизованных месторождениях вне всякой связи с экзогенными процессами.

Из многочисленных месторождений России приведем лишь отдельные примеры.

1. К числу магматических месторождений относится Кусинское месторождение титаномагнетита, содержащего также повышенное количество ванадия (на Урале в 18 км к северу от Златоуста). Это месторождение представлено жилами сплошных руд, залегающими среди материнских измененных изверженных пород габбровой формации. Магнетит тесно ассоциирует здесь с ильменитом и хлоритом. На Ю. Урале разрабатывается Копанское месторождение Ti-магнетита.

2. Примером контактово-метасоматических месторождений является известная гора Магнитная (Южный Урал). Мощные магнетитовые залежи располагаются среди гранатовых, пироксено-гранатовых и гранат-эпидотовых скарнов, образовавшихся при воздействии гранитной магмы на известняки. В некоторых участках рудных залежей магнетит ассоциирует с первичным гематитом. Руды, залегающие ниже зоны окисления, содер­жат вкрапленные сульфиды (пирит, изредка халькопирит, галенит и др.).

К числу таких же месторождений относятся на Урале: гора Высокая (у Нижнего Тагила), гора Благодать (в Кушвинском районе), Коршуновское (в Забайкалье), группа месторождений в Кустанайской области Казахстана (Соколовское, Сарбайское, Куржункуль), а также Дашкесан (Азербайджан) и др.

3. Крупнейшее месторождение Кривой Рог (Украина) относится к числу регионально-метаморфизованных осадочных месторождений. В толще слоистых железистых кварцитов, кроме типичных пластовых залежей, сплошные железные руды представлены также столбообразными залежами с линзовидной формой в поперечном сечении, уходящими на значительную глубину. К числу аналогичных по генезису месторождений относятся: Курская магнитная аномалия (к юго-востоку от Курска). Глубоко метаморфизованные железистые кварциты известны также в месторождениях на Коль­ском полуострове (Оленегорское) и в Западной Карелии (Костомукша).

Из иностранных отметим крупнейшие месторождения Кирунаваара и Люоссаваара в Швеции, залегающие в виде мощных жилообразных залежей в метаморфизованных толщах вулканитов; магнетит ассоциирует здесь с апатитом. Огромные месторождения магнетито-гематитовых руд США располагаются в районе Верхнего озера среди древнейших метаморфизованных сланцев, в Лабрадоре (Ньюфаундленд) и др.

Практическое значение. Магнетитовые руды, содержащие нередко около 60% Fe, представляют собой важнейшее сырье для выплавки чугуна и стали. Вредными примесями в руде считаются фосфор, содержание которого при бессемеровском способе плавки не должно превышать 0,05%, а для качественного металла — 0,03 %, и сера, предельное максимальное содержание которой должно быть не выше 1,5%. При плавке руд по томасовскому способу, при котором фосфор переводится в шлак, содержание его должно быть не ниже 0,61 и не выше 1,50%. Получающийся при этом фосфористый шлак носит название томасшлака и используется в качестве удобрения.

При плавке титаномагнетитовых руд из шлаков извлекается ванадий, имеющий большое значение при изготовлении качественных сталей. Пятиокись ванадия используется также в химической промышленности, а как краситель — в керамике, и для других целей.

Опал

Опал — SiO2·H2O. Типичный твердый гидрогель. Происхождение названия неизвестно. Разновидности по физическим признакам: 1) благородный опал, обладающий опалесценцией; 2) гидрофан — легкая разновидность, сильно пористая, мутная в сухом состоянии и прозрачная в воде; 3) гиалит — сталактитовые образования или шарики сферолитового строения.

Химический состав очень непостоянный. Содержание воды колеблется от 1 до 5, крайне редко достигая 34 %. Часть воды все опалы способны терять при высушивании в эксикаторе. Особенно быстро потеря ее происходит в первые дни (рис. 195). При нагревании одни опалы отдают главную часть воды до 100 °С, другие — выше этой температуры (100-250 °С). Причины этой различной прочности связи воды полностью не выяснены.

Внутреннее строение опалов является весьма своеобразным: опал построен из полимеризованных нитей аморфного кремнезема с фрагментами более правильной структуры кварца, а нередко и тридимита. Нити свернуты или собраны в глобулы — шаровидные образования выдержанного размера диаметром порядка 1000 Е. Глобулы в свою очередь регулярным образом уложены в упаковку, по конфигурации близкую к плотнейшей кубической, иногда — гексагональной; в промежутках между глобулами размещается вода, которая их дополнительно связывает. Получающаяся регулярная структура по масштабу периодичности отвечает длинам волн видимого света и способна вызвать интерференционные явления, обеспечивающие столь ценимый в ювелирно-поделочных опалах эффект опалесценции.

Морфологические особенности. Обычно наблюдается в плотных стеклоподобных массах с натечной внешней формой. Является главной составной частью некоторых организмов, слагая панцири диатомей, спикулы губок, скелеты радиолярий, отчасти некоторых фораминифер и мшанок, для которых коллоидные растворы (золи) кремнезема служат пищей. Благодаря наличию кремнезема скелеты этих организмов в большинстве случаев прекрасно сохраняются в ископаемом состоянии даже в древнейших отложениях. Гидроокислы кремнезема входят также в состав соломы злаков, твердых узловатостей в хвощах и особенно узлов бамбука и других растений, поглощающих золи кремнезема из почвы своими корнями. Золи кремнезема способны пропитывать отмершие стволы деревьев, и, отлагая опал, полностью их замещать с сохранением всех деталей строения («деревянистый опал»).

Цвет. Сам по себе опал бесцветен. Благодаря различным примесям, особенно содержащим железо и другие хромофоры, он бывает окрашен в различные оттенки желтого, бурого, красного, зеленого и черного цветов. Блеск стеклянный (у пористых масс восковой или матовый). Для полупрозрачных разностей характерна цветовая игра — опалесценция (происхождение названия этого явления связано именно с этим минералом). Твердость 5-5,5 (у разностей, очень бедных водой, поднимается до 6). Хрупок. Уд. вес 1,9-2,5 (зависит от содержания воды и от количества адсорбированных тяжелых веществ).

Диагностические признаки. Для плотных опалов характерны стеклообразный вид и натечные формы масс, сплошные корки. По внешним признакам опал имеет много общего с халцедоном. Он отличается меньшей твердостью и содержанием воды.

Не плавится, но часто сильно растрескивается. В закрытой трубке выделяет воду. В кислотах не разлагается. Довольно легко растворяется в КОН и HF. Обезвоженный опал растворяется в соде с шипением (вследствие выделения СО2).

Происхождение и месторождения. Опал нередко отлагается из гидротермальных источников и гейзеров в вулканических областях в виде на­кипи (кремнистый туф, гейзерит), иногда в виде белых просвечивающих натеков с перламутровым отливом. Распространен также в пустотах и трещинах среди эффузивных горных пород, иногда в виде жеод и миндалин.

Однако в главной массе он образуется в экзогенных условиях при разложении силикатов в процессе выветривания самых различных по составу горных пород, но чаще ультраосновных. Кремнезем, освобождающийся при распаде кристаллических структур силикатов, переходит первоначально в золь, при коагуляции которого выпадает в зоне элювия в виде желваков натечной формы или отлагается метасоматическим путем, часто совместно с гидроокислами железа, алюминия и других элементов, на различных коренных горных породах.

Огромные массы опала образуются осадочным путем в виде пластов в процессе коагуляции приносимых речными водами золей кремнезема в прибрежных зонах морских бассейнов. К ним принадлежат так называемые опоки, трепелы, диатомиты, кизельгур (кремневая мука) и т. д., представляющие собой рыхлые или тонкопористые, иногда более или менее крепкие породы, на поверхности часто превращенные в мелоподобные массы вследствие механического действия замерзающей воды, пропитывающей их.

Следует упомянуть, наконец, об окаменяющей роли растворов кремнезема при метасоматозе растительных остатков и, в частности, стволов деревьев. Каким бы путем ни образовался опал, он в конце концов постепенно переходит в халцедон или кварц.

Осадочные опалсодержащие породы (опоки, трепелы и диатомиты) особенно широким распространением пользуются в неогеновых мелководных отложениях в Ульяновской, Саратовской и других областях Европейской части России, а также вдоль восточного склона Уральского хребта и в других местах. Из иностранных месторождений следует упомянуть о месторождениях Богемии, Италии, Ливии (Триполи, откуда происходит название трепел) и др. Месторождения благородных опалов известны на южном склоне Карпат, близ Кошице (в пустотах изверженной породы — андезита), в Австралии — Новый Южный Уэллс и Квинсленд (в песчаниках, занимающих огромную площадь) и в других местах.

Практическое значение. Благородные опалы употребляются как поделочные камни. Трепел применяется для полировки металлов, камней и для других целей. Кизельгур идет для изготовления фильтров, керамики, выделки легких кирпичей и для других целей.

Пиролюзит

Пиролюзит — MnO2. От греч. пирос — огонь, люзиос — уничтожающий (употребляется в стеклоделии для уничтожения зеленого оттенка стекла). Синоним: полианит (так называли явнокристаллические разности).

Химический состав. Mn — 63,2%. В тонкозернистых и скрытокристаллических массах, обычно в виде механических примесей, присутствуют: Fe2O3, SiO2, Н2О и т. д.

Сингония тетрагональная. Кристаллическая структура аналогична структуре рутила. В кристаллах встречается редко (только в пустотах). Они имеют игольчатый или шестоватый облик. Пиролюзит обычно наблюдается в сплошных кристаллических или скрытокристаллических, часто порошковатых, сажистых массах, частью в псевдоморфозах по почковидным агрегатам псиломелана.

Цвет пиролюзита стально-серый, в дисперсных массах — черный. Иногда синеватая металлическая побежалость. Черта черная. Блеск металлический до полуметаллического. Непрозрачен.

Твердость у кристаллических индивидов 5-6; в агрегатах снижается до 2 (в зависимости от пористости и рыхлости). Очень хрупок. Спайность совершенная.

Диагностические признаки. От других черных марганцевых минералов, обладающих черной чертой, отличается по сильному блеску, характерной для него спайности, хрупкости и сравнительно низкой твердости.

Не плавится. Выделяя часть кислорода (до 12 % весовых), переходит в низшие окислы и буреет. При нагревании до 500 °С не изменяется, в интервале 550-650 °С, как установлено рентгенометрическими исследованиями, происходит диссоциация с образованием β-браунита (кубической модификации); при дальнейшем нагревании при температурах 940-1100 °С β-браунит переходит в устойчивый при высоких температурах гаусманит. В НСl растворяется с выделением хлора. Это явление широко используется в химической промышленности. С бурой и фосфорной солью в окислительном пламени дает фиолетовое стекло; при восстановлении оно становится бесцветным.

Происхождение и месторождения. Сравнительно редко образуется в гидротермальных месторождениях марганца, и лишь при условии явно окислительной среды, зато широко распространен на земной поверхности как высший природный окисел марганца в прибрежных фациях осадочных месторождений. Является наиболее устойчивым окислом марганца в зоне окисления. В этих условиях в конце концов в него переходят все марганцевые минералы, содержащие марганец в низших степенях окисления. Поэтому нередки псевдоморфозы пиролюзита по манганиту, вернадиту, псиломелану, гаусманиту и др. Вследствие своей хрупкости в россыпях наблюдается крайне редко. Постоянно встречается во всех так называемых марганцевых шляпах, т. е. в зонах окисления, а также в ряде осадочных месторождений.

На территории России известен в Сапальском (Ср. Урал), Полуночном (Сев. Урал) и Мозульском (Красноярский край) месторождениях. Из числа крупнейших в мире осадочных месторождений на территории ближнего зарубежья необходимо отметить Чиатурское (Грузия), в котором пиролюзит слагает оолитовые стяжения и, кроме того, в виде скрытокристаллических мягких агрегатов образует псевдоморфозы по оолитам манганита (на выходах пластов на поверхность), Никопольское (Украина), где он иногда слагает более крупные шаровидные конкреции с концентрически-зональным строением (обычно в псевдоморфозах по манганиту).

Из иностранных месторождений следует отметить зоны окисления метаморфизованных месторождений Индии, Золотого Берега (Западная Африка) и др. Хорошо образованные кристаллы были установлены в месторождении Платген (Чехия).

Практическое значение. Чисто пиролюзитовые руды используются для самых различных целей: 1) в производстве сухих электрических батарей; 2) в изготовлении для той же цели искусственно активированных продуктов; 3) в стекольном деле для обесцвечивания зеленого стекла; 4) при изготовлении химических препаратов, употребляемых в медицине и для других целей; 5) в производстве специальных противогазов для защиты от окиси углерода, катализаторов типа гопкалита для очистки от вредных примесей выхлопных газов автомобильных двигателей и пр.; 6) в технике при производстве олифы, масел, воска, в кожевенном деле при выделке хромовой кожи, в фотографии, в производстве красок и т. д. Для целей производства сухих батарей содержание двуокиси марганца в руде должно быть не ниже 80 %.

Псиломелан

Псиломелан — mMnO·nМnО2/Н2О. Не может быть охарактеризован определенной формулой. Псилос по-гречески — лысый, мелас — черный («черная стеклянная голова»). В американской литературе под этим термином предлагается подразумевать существенно бариевую разность, другими авторами называемую романешитом (в настоящее время — минеральный вид с формулой (Ba,H2O)(Mn4+,Mn3+)5O10). Основанием этому послужило то, что первые образцы, названные псиломеланом, как было установлено впоследствии, оказались богатыми барием. Однако наиболее широко распространенной из всех разностей группы псиломелана является бедная барием. В настоящее время термин «псиломелан» не имеет статуса видового названия, так как является собирательным названием и охватывает широкий круг минералов марганца и их смесей, обладающих высокой плотностью в отличие от рыхлого и мягкого вада.

Химический состав непостоянен. Соотношение MnO и MnO2 колеблется в относительно широких пределах, в зависимости от степени окисления низшего окисла марганца. Содержание MnO2 обычно составляет 60-80%, MnO сравнительно невелико 8-25 %, Н2О 4-6 % (большая ее часть удаляется при температуре свыше 110°). В небольших количествах часто присутствуют BaO (до нескольких процентов), иногда щелочи, CaO, CoO, MgO, ZnO, а также SiO2, Fe2O3, Al2O3 в виде посторонних примесей. Изредка устанавливается WO3 (до 1, а иногда до 5-8 %) — тунгомелан.

Сингония не устанавливается однозначно, в большинстве псиломеланов велика доля ромбической составляющей. Обычно наблюдается в почковидных формах с концентрически-зональным строением или в тонкокристаллических агрегатах. Нередки дендритовидные налеты.

Цвет псиломелана черный, иногда буровато-черный. Черта обычно черная. Блеск полуметаллический до алмазного, у рыхлых разностей матовый.

Твердость 4—6 (для плотных разностей), колеблется в зависимости от содержания воды и физического состояния. Хрупок. Уд. вес 4,4—4,7.

Диагностические признаки. Принадлежность к группе псиломелана устанавливается по формам агрегатов, черной черте и реакции на марганец. Точная диагностика пока возможна лишь с помощью тонкого химического анализа.

При прокаливании в паяльной трубке не плавится. При растворении в соляной кислоте выделяется хлор. В закрытой трубке выделяет воду и кислород. С бурой и фосфорной солью в окислительном пламени дает фиолетовый перл.

Происхождение и месторождения. Подобно всем образованиям, объединяемым под названием псиломелана, образуется главным образом в экзогенных условиях: в зонах окисления месторождений марганцевых руд и в месторождениях осадочного происхождения. Как второстепенный минерал встречается также в рудах марганца гидротермального генезиса.

В зонах окисления он образуется в основном за счет таких минералов, как браунит, гаусманит, иногда силикатов и карбонатов марганца (совместно с вернадитом), а также самостоятельным путем при коагуляции гидроокислов марганца в виде натечных форм в пустотах и в виде плотных масс.

В осадочных месторождениях марганца псиломелан встречается в виде прослоев плотных руд или оолитов и шарообразных конкреций с концентрически-скорлуповатым строением.

При выветривании псиломелан подвергается окислению и дегидратации. При этом за счет его образуется пиролюзит, главным образом на поверхности пустот и пор, часто в виде черной сажистой массы.

К крупнейшим осадочным месторождениям марганца, в которых встречается псиломелан, принадлежат Чиатурское (Грузия) и Никопольское (Украина).

Практическое значение. Вместе с пиролюзитом и другими окисными минералами марганца является главной рудой, используемой в черной металлургии для выплавки ферромарганца. Более бедные марганцем руды используются для подшихтовки при выплавке из железных руд обыкновенных чугунов.

В заключение надо отметить, что диагностика полиминеральных смесей, да и более или менее чистых оксидных марганцевых минералов, требует применения сложных методик, таких как электронная микроскопия и ИК-спектроскопия. В то же время при визуальной диагностике подобные образования заслуживают хоть какого-то предварительного заключения с учетом легкоопределяемых свойств и характерной мор­фологии; именно в таких случаях может быть употреблено название «псиломелан».

Рутил

Рутил — TiO2. Название происходит от лат. rutilus — красноватый. Он является наиболее устойчивой модификацией TiO2 как при высоких, так и при низких температурах.

Химический состав. Ti — 60%. Химические анализы показывают, что в нем часто присутствуют примеси других элементов: Fe в виде закиси или окиси, иногда Sn4+ (до 1,5 %), изредка Cr3+, V3+ и некоторые другие. Богатая FeTiO3 (в виде твердого раствора) разность называется нигрином. Минеральные виды, сохраняющие неупорядоченный структурный тип рутила и содержащие Nb5+ или Та5+ одновременно с Fe2+ (или Fe3+) в количестве, превосходящем Ti, называются ильменорутилом и стрюверитом соответственно.

Сингония тетрагональная. Кристаллическая структура отличается некоторыми особенностями от ранее разобранных плотноупакованных структур оксидов, таких как корунд.

Облик кристаллов рутила чрезвычайно характерен: призматический, столбчатый до игольчатого. Часто наблюдается штриховатость вдоль главной оси. Очень часты двойники коленчатой. Плос­кие сетчатые (под 60°) сростки двойников игольчатого рутила называют сагенитом. Как было указано, распространены закономерные срастания кристалликов рутила с кристаллами гематита, причем четверная ось рутила совпадает с одной из горизонтальных двойных осей гематита. Игольчатые волосовидные кристаллы рутила иногда наблюдаются в виде пучков, заключенных в прозрачных кристаллах кварца («кварц-волосатик»).

Цвет рутила обычно темно-желтый, серый, бурый, оранжевый, красный и черный (нигрин). Бесцветные или бледноокрашенные разности исключительно редки. Черта желтая, светло-бурая. Блеск алмазный до металловидного (для непрозрачных черных разностей). Твердость 6. Хрупок. Спайность средняя. Уд. вес 4,2-4,3.

Диагностические признаки. Весьма характерны тетрагональные призматического облика кристаллы и коленчатые двойники. Смешать можно с минералами, похожими по облику кристаллов: с цирконом (Zr[SiO4]), обладающим более высокой твердостью (7-8), и касситеритом (SnO2), для которого характерен высокий удельный вес. Волосовидные кристаллы рутила можно принять иногда за турмалин, отличающийся по оптическим константам.

При прокаливании в паяльной трубке не плавится и не изменяется. В кислотах не растворяется. С фосфорной солью реагирует на титан (стекло в восстановительном пла­мени становится фиолетовым).

Происхождение и месторождения. Рутил в природе образуется в различных условиях. Изредка он наблюдается как составная акцессорная часть изверженных пород (сиенитов, реже гранитов). В небольших количествах он встречается в пегматитах и некоторых гидротермальных месторождениях в ассоциации с кварцем, минералами титана и железа (ильменитом, гематитом, магнетитом), иногда с корундом, силикатами и с другими минералами. Известны редкие находки его в виде новообразований в экзо­генных продуктах разложения титановых минералов, изредка в осадочных породах, а также месторождениях боксита. Однако гораздо чаще он образуется при метаморфических процессах в результате преобразования титансодержащих минералов, выделяясь в виде самостоятельных зерен в гнейсах, слюдяных сланцах, амфиболитах, наждаках и других породах; для эклогитов рутил является индикаторным минералом.

Весьма эффектны его игольчатые и волосовидные кристаллы в жилах альпийского типа, нередко заключенные в кристаллы горного хрусталя и гематита; часто он наблюдается в сопровождении брукита и анатаза.

В зоне окисления химически устойчив и нередко встречается в россыпях в виде окатанных зерен и галек.

В России рутил в виде крупных кристаллов известен в ряде месторождений: в слюдяных сланцах в Слюдоруднике в Вишневых горах, в пегматитовых жилах Ильменских гор, на Приполярном Урале (г. Неройка, Парнук) в жилах альпийского типа и в других местах. Кроме того, он часто встречается в россыпях, особенно на Среднем Урале, в Тиманском крае и в Центральной России. В ближнем зарубежье отмечается в месторож­дении наждака Семиз-Бугу (Центральный Казахстан) с корундом и в виде прекрасно образованных кристаллов в пустотах кварцевых жил Капуджжука (Зангезурский хребет, Армения).

Из иностранных отметим месторождения Северной Каролины (США), где встречаются замечательные кристаллы рутила различного облика.

Практическое значение. Добываемый из комплексных титан-циркониевых россыпей, употребляется для выплавки ферротитана, применяе­мого в производстве некоторых стойких при ударе сортов стали, в керамике, в качестве бурой краски, в радиотехнике — как детектор, для изготовления титановых белил и др. О применении металлического титана см. ильменит.

Тенорит

Тенорит — СuО. Синоним: мелаконит (массивная разность).

Химический состав. Сu — 79,9 %, О — 20,1 %.

Сингония моноклинная. Кристаллы призматического облика. Редкий минерал. Наблюдается обычно в виде тонкочешуйчатых или землистых агрегатов.

Цвет черный или серовато-черный. Черта серовато-черная. Блеск полуметаллический. В полированных шлифах сильно анизотропен.

Твердость З,5. Хрупкий. Уд. вес 5,8-6,4.

П. п. тр. не плавится. В кислотах легко растворяется.

Месторождения. Встречается в зонах окисления медносульфидных месторождений в ассоциации с купритом, лимонитом, хризоколлой, малахитом, гидроокислами марганца и другими гипергенными минерала­ми. На Урале был описан в районе Турьинских медных рудников (Северный Урал), в Меднорудянском месторождении (у г. Нижний Тагил). Обнаружен среди продуктов осаждения из эксгаляций вулкана Большой Толбачик (Камчатка) в виде щеток пластинчатых кристаллов.

В больших количествах наблюдался в медных месторождениях в районе Верхнего озера в штате Мичиган (США), в месторождениях пустыни Атакама (Чили) и др. В тонких чешуйках на лаве встречается на Везувии и Этне в ассоциации с хлоридами щелочей и меди.